A new class of symplectic integration schemes based on generating functions

نویسندگان

  • Joseba Makazaga
  • Ander Murua
چکیده

We present a new family of one-step symplectic integration schemes for Hamiltonian systems of the general form ẏ = J∇H(y) . Such a class of methods contains as particular cases the methods of Miesbach and Pesch [13], and also the family of symplectic Runge-Kutta methods. As in the case of the methods introduced in [13], the new integration methods are constructed by defining a generating function, which automatically determines a symplectic map. The resulting methods are implicit, and require the evaluation of the gradient of the Hamiltonian function as well as the Hessian times a vector.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New High Order Closed Newton-Cotes Trigonometrically-fitted Formulae for the Numerical Solution of the Schrodinger Equation

In this paper, we investigate the connection between closed Newton-Cotes formulae, trigonometrically-fitted methods, symplectic integrators and efficient integration of the Schr¨odinger equation. The study of multistep symplectic integrators is very poor although in the last decades several one step symplectic integrators have been produced based on symplectic geometry (see the relevant lit...

متن کامل

Recurrence Relations for Moment Generating Functions of Generalized Order Statistics Based on Doubly Truncated Class of Distributions

In this paper, we derived recurrence relations for joint moment generating functions of nonadjacent generalized order statistics (GOS) of random samples drawn from doubly truncated class of continuous distributions. Recurrence relations for joint moments of nonadjacent GOS (ordinary order statistics (OOS) and k-upper records (k-RVs) as special cases) are obtained. Single and product moment gene...

متن کامل

High-Order Symplectic Schemes for Stochastic Hamiltonian Systems

The construction of symplectic numerical schemes for stochastic Hamiltonian systems is studied. An approach based on generating functions method is proposed to generate the stochastic symplectic integration of any desired order. In general the proposed symplectic schemes are fully implicit, and they become computationally expensive for mean square orders greater than two. However, for stochasti...

متن کامل

Wilson wavelets for solving nonlinear stochastic integral equations

A new computational method based on Wilson wavelets is proposed for solving a class of nonlinear stochastic It^{o}-Volterra integral equations. To do this a new stochastic operational matrix of It^{o} integration for Wilson wavelets is obtained. Block pulse functions (BPFs) and collocation method are used to generate a process to forming this matrix. Using these basis functions and their operat...

متن کامل

Theta functions on covers of symplectic groups

We study the automorphic theta representation $Theta_{2n}^{(r)}$ on the $r$-fold cover of the symplectic group $Sp_{2n}$‎. ‎This representation is obtained from the residues of Eisenstein series on this group‎. ‎If $r$ is odd‎, ‎$nle r

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Numerische Mathematik

دوره 113  شماره 

صفحات  -

تاریخ انتشار 2009